Kinetic Limit for Wave Propagation in a Random Medium

نویسندگان

  • Jani Lukkarinen
  • Herbert Spohn
چکیده

We study crystal dynamics in the harmonic approximation. The atomic masses are weakly disordered, in the sense that their deviation from uniformity is of order √ ε. The dispersion relation is assumed to be a Morse function and to suppress crossed recollisions. We then prove that in the limit ε → 0 the disorder averaged Wigner function on the kinetic scale, time and space of order ε, is governed by a linear Boltzmann equation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variational Principle and Plane Wave Propagation in Thermoelastic Medium with Double Porosity Under Lord-Shulman Theory

The present study is concerned with the variational principle and plane wave propagation in double porous thermoelastic infinite medium. Lord-Shulman theory [2] of thermoelasticity with one relaxation time has been used to investigate the problem. It is found that for two dimensional model, there exists four coupled longitudinal waves namely longitudinal wave (P), longitudinal thermal wave (T),...

متن کامل

Influence of Heterogeneity on Rayleigh Wave Propagation in an Incompressible Medium Bonded Between Two Half-Spaces

The present investigation deals with the propagation of Rayleigh wave in an incompressible medium bonded between two half-spaces. Variation in elastic parameters of the layer is taken linear form. The solution for layer and half-space are obtained analytically. Frequency equation for Rayleigh waves has been obtained. It is observed that the heterogeneity and width of the incompressible medium h...

متن کامل

Wave Propagation in Generalized Thermodiffusion Elastic Medium with Impedence Boundary Condition

In the present investigation, we study the reflection of plane waves, that is, Longitudinal displacement wave(P-Wave), Thermal wave(T-Wave) and Mass Diffusive wave(MD-Wave) in thermodiffusion elastic-half medium which is subjected to impedence boundary condition in context of one relaxatioon time theory given by Lord and Shulman theory (L-S) and the Coupled theory (C-T) of thermoelasticity. The...

متن کامل

Self-averaging of kinetic models for waves in random media

Kinetic equations are often appropriate to model the energy density of high frequency waves propagating in highly heterogeneous media. The limitations of the kinetic model are quantified by the statistical instability of the wave energy density, i.e., by its sensitivity to changes in the realization of the underlying heterogeneous medium modeled as a randommedium. In the simplified Itô-Schrödin...

متن کامل

Analytical D’Alembert Series Solution for Multi-Layered One-Dimensional Elastic Wave Propagation with the Use of General Dirichlet Series

A general initial-boundary value problem of one-dimensional transient wave propagation in a multi-layered elastic medium due to arbitrary boundary or interface excitations (either prescribed tractions or displacements) is considered. Laplace transformation technique is utilised and the Laplace transform inversion is facilitated via an unconventional method, where the expansion of complex-valued...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008